Farzan Nadim
Farzan Nadim
Professor and Chair, Biological Sciences, Biological Sciences
420E Central King Building (CKB)
About Me
I am a neuroscientist. My primary interest is how neuronal circuits in the central nervous system produce behavior, and how these behaviors are modified by neuromodulatory chemicals.
My lab performs experiments, using invertebrate animals, on the generation and neuromodulation of oscillations in the central nervous system, and how these oscillations result in the control of rhythmic movements. Of particular interest to us is how the effects of endogenous chemical neuromodulators, including monoamines such as dopamine and serotonin, and peptides such as endorphin, interact to modify the output of neural circuits.
Since 2019 I have started a collaborative research to explore cerebellar interaction with the brain dopaminergic centers, and its potential effects on motor function, learning and addiction.
In addition to our experimental work, our lab has a strong history in building mathematical and computational models to explore the mechanisms and function of neural circuits. These models are part of the tool set that we use to guide our understanding of the nervous system.
My lab performs experiments, using invertebrate animals, on the generation and neuromodulation of oscillations in the central nervous system, and how these oscillations result in the control of rhythmic movements. Of particular interest to us is how the effects of endogenous chemical neuromodulators, including monoamines such as dopamine and serotonin, and peptides such as endorphin, interact to modify the output of neural circuits.
Since 2019 I have started a collaborative research to explore cerebellar interaction with the brain dopaminergic centers, and its potential effects on motor function, learning and addiction.
In addition to our experimental work, our lab has a strong history in building mathematical and computational models to explore the mechanisms and function of neural circuits. These models are part of the tool set that we use to guide our understanding of the nervous system.
Education
Ph.D.; Boston University; Mathematics; 1994
M.A.; Boston University; ; 1989
M.A.; Boston University; ; 1989
Website
Teaching Interests
Cellular Neurobiology
Systems Neurobiology
Neurophysiology
Biology of Reward and Addiction
Cerebellar Function
Computational Neuroscience
Systems Neurobiology
Neurophysiology
Biology of Reward and Addiction
Cerebellar Function
Computational Neuroscience
Past Courses
BIOL 443: BIOLOGY OF ADDICTION
BIOL 447: CELLULAR&SYSTEMS NEUROSC-HON
BIOL 447: CELLULAR&SYSTEMS NEUROSCIENCE
BIOL 447: SYSTEMS NEUROBIOLOGY
BIOL 447: SYSTEMS NEUROBIOLOGY - HONORS
BIOL 498: SPECIAL TOPICS IN BIOLOGY
BIOL 630: CRITICAL THINKING FOR LIFE SCI
BIOL 641: SYSTEMS NEUROSCIENCE
BIOL 643: BIOLOGY OF ADDICTION
BIOL 698: ST:
BIOL 698: ST: GRANT WRITING
BIOL 698: ST:NEUROSCIENCE
BIOL 788: ST:OSCILLATIONS IN CEN NERV SY
BIOL 788: ST:QUANTITATIVE NEUROSCIENCE LA
BIOL 788: ST:QUANTITATIVE NEUROSCIENCE LE
MATH 213: CALCULUS IIIB
MATH 222: DIFFERENTIAL EQUATIONS
MATH 337: LINEAR ALGEBRA
MATH 373: INTRO TO MATHEMATICAL BIOLOGY
MATH 792B: PRE DOCTORAL RESEARCH
BIOL 447: CELLULAR&SYSTEMS NEUROSC-HON
BIOL 447: CELLULAR&SYSTEMS NEUROSCIENCE
BIOL 447: SYSTEMS NEUROBIOLOGY
BIOL 447: SYSTEMS NEUROBIOLOGY - HONORS
BIOL 498: SPECIAL TOPICS IN BIOLOGY
BIOL 630: CRITICAL THINKING FOR LIFE SCI
BIOL 641: SYSTEMS NEUROSCIENCE
BIOL 643: BIOLOGY OF ADDICTION
BIOL 698: ST:
BIOL 698: ST: GRANT WRITING
BIOL 698: ST:NEUROSCIENCE
BIOL 788: ST:OSCILLATIONS IN CEN NERV SY
BIOL 788: ST:QUANTITATIVE NEUROSCIENCE LA
BIOL 788: ST:QUANTITATIVE NEUROSCIENCE LE
MATH 213: CALCULUS IIIB
MATH 222: DIFFERENTIAL EQUATIONS
MATH 337: LINEAR ALGEBRA
MATH 373: INTRO TO MATHEMATICAL BIOLOGY
MATH 792B: PRE DOCTORAL RESEARCH
Research Interests
Oscillations in the central nervous system
Rhythmic motor activity and its neuromodulation
Neurobiology of reward and addiction
Rhythmic motor activity and its neuromodulation
Neurobiology of reward and addiction
Journal Article
Li, Xinping , & Itani, Omar, & Bucher, Dirk M., & Rotstein, Horacio G., & Nadim, Farzan (2023). Distinct Mechanisms Underlie Electrical Coupling Resonance and Its Interaction with Membrane Potential Resonance. Frontiers in Systems Biology, 3, 1122433.
Levenstein, Daniel , & Authors, Manny, & Authors, Manny, & Rotstein, Horacio G., & Nadim, Farzan, & Redish, David (2023). On the role of theory and modeling in neuroscience. The Journal of Neuroscience, 43, 1074-1088.
Anwar, Haroon, & Martinez, Diana, & Bucher, Dirk M., & Nadim, Farzan (2022). Inter-Animal Variability in Activity Phase Is Constrained by Synaptic Dynamics in an Oscillatory Network. eNeuro , 9(4),
Ghobreal, Bemin, & Nadim, Farzan, & Sahin, Mesut (2022). Selective neural stimulation by leveraging electrophysiological differentiation and using pre-pulsing and non-rectangular waveforms. Journal of Computational Neuroscience,
Gorur-Shandilya, Srinivas, & Cronin, Elizabeth M, & Schneider, Anna C, & Haddad, Sarah, & Bucher, Dirk M., & Nadim, Farzan, & Marder, Eve (2022). Mapping circuit dynamics during function and dysfunction. Elife, 11,
Levenstein, Daniel , & Authors, Manny, & Authors, Manny, & Rotstein, Horacio G., & Nadim, Farzan, & Redish, David (2023). On the role of theory and modeling in neuroscience. The Journal of Neuroscience, 43, 1074-1088.
Anwar, Haroon, & Martinez, Diana, & Bucher, Dirk M., & Nadim, Farzan (2022). Inter-Animal Variability in Activity Phase Is Constrained by Synaptic Dynamics in an Oscillatory Network. eNeuro , 9(4),
Ghobreal, Bemin, & Nadim, Farzan, & Sahin, Mesut (2022). Selective neural stimulation by leveraging electrophysiological differentiation and using pre-pulsing and non-rectangular waveforms. Journal of Computational Neuroscience,
Gorur-Shandilya, Srinivas, & Cronin, Elizabeth M, & Schneider, Anna C, & Haddad, Sarah, & Bucher, Dirk M., & Nadim, Farzan, & Marder, Eve (2022). Mapping circuit dynamics during function and dysfunction. Elife, 11,
SHOW MORE
Schneider, Anna C, & Fox, David, & Itani, Omar, & Golowasch, Jorge P., & Bucher, Dirk M., & Nadim, Farzan (2021). Frequency-Dependent Action of Neuromodulation. eNeuro , 8(6),
Daur, Nelly, & Nadim, Farzan, & Bucher, Dirk M. (2021). Synaptic Dynamics Convey Differential Sensitivity to Input Pattern Changes in Two Muscles Innervated by the Same Motor Neurons. eNeuro , 8(6),
Rotstein, Horacio G., & Nadim, Farzan (2020). Neurons and neural networks: Computational models. Encyclopedia of Life Sciences. John Wiley \& Sons, Ltd: Chichester,
Rotstein, Horacio G., & Nadim, Farzan (2019). Membrane potential resonance arising from responses of neuronal models to oscillatory inputs in current versus voltage clamp. Biological Cybernetics, 113, 373–395.
Martinez, Diana, & Anwar, Haroon, & Bose, Amitabha K., & Bucher, Dirk M., & Nadim, Farzan Short-Term Synaptic Dynamics Control the Activity Phase of Neurons in an Oscillatory Network. eLife,
Martinez, Diana, & Santin, Joseph M, & Schulz, David, & Nadim, Farzan The differential contribution of pacemaker neurons to synaptic transmission in the pyloric network of the Jonah crab, Cancer borealis. Journal of Neurophysiology, 122(4), 1623-1633.
Li , X, & Bucher, Dirk M., & Nadim, Farzan (2018). Distinct Co-Modulation Rules of Synapses and Voltage-Gated Currents Coordinate Interactions of Multiple Neuromodulators.. The Journal of neuroscience : the official journal of the Society for Neuroscience, 38(40), 8549-8562.
Akcay, Zeynep, & Huang, Xinxian, & Nadim, Farzan, & Bose, Amitabha K. (2018). Phase-locking and bistability in neuronal networks with synaptic depression. Physica D: Nonlinear Phenomena, 364, 8-21.
Chen, Yinbo, & Li, Xinping, & Rotstein, Horacio G., & Nadim, Farzan (2016). Membrane potential resonance frequency directly influences network frequency through gap junctions. Journal of Neurophysiology, 116, 1554-1563.
Zhang, Y, & Bucher, Dirk M., & Nadim, Farzan (2017). Ionic mechanisms underlying history-dependence of conduction delay in an unmyelinated axon.. eLife, 6,
Fox, David, & Tseng, Hua-an, & Smolinsky, Tomasz, & Rotstein, Horacio G., & Nadim, Farzan (2017). Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comp Biology,
Golowasch, Jorge P., & Bose, Amitabha K., & Guan, Y., & Salloum, D., & Roeser, A., & Nadim, Farzan (2017). A balance of outward and linear inward ionic currents is required for generation of slow-wave oscillations. Journal of Neurophysiology, 118, 1092-1104.
Anwar, H, & Li , X, & Bucher, Dirk M., & Nadim, Farzan (2017). Functional roles of short-term synaptic plasticity with an emphasis on inhibition.. Current opinion in neurobiology, 43, 71-78.
Daur, N, & Nadim, Farzan, & Bucher, Dirk M. (2016). The complexity of small circuits: the stomatogastric nervous system.. Current opinion in neurobiology, 41, 1-7.
Mouser, Christina, & Bose, Amitabha K., & Nadim, Farzan (2016). The role of electrical coupling in generating and modulating oscillations in a neuronal network. Mathematical Biosciences, 278, 11-21.
Bose, Amitabha K., & Golowasch, Jorge P., & Guan, Yinzheng, & Nadim, Farzan (2014). The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations. Journal of Computational Neuroscience, 37(2), 229-242.
Martinez, Diana, & Tseng, Hua-an, & Nadim, Farzan (2014). The frequency preference of neurons and synapses in a recurrent oscillatory network. J Neuroscience, 34, 12933-12945.
Rotstein, Horacio G., & Nadim, Farzan (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37, 9-28.
Akcay, Zeynep, & Bose, Amitabha K., & Nadim, Farzan (2014). Effects of synaptic plasticity on phase and period locking in a network of two oscillatory neurons. J Mathematical Neuroscience, 4(8), 29.
Rotstein, Horacio G., & Nadim, Farzan (2013). Neurons and neural networks: Computational models. Encyclopedia of Life Sciences (ohn Wiley \& Sons, Ltd: Chicheste), DOI: 10.1002/9780470015902.a0000089.pub2.
Rotstein, Horacio G., & Nadim, Farzan (2013). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, Online First, 1 - 20.
Oh, Myongkeun, & Zhao, Shunbing, & Matveev, Victor V., & Nadim, Farzan (2012). Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. Journal of Computational Neuroscience, 33(3), 573-585.
Ballo, Alexander, & Nadim, Farzan, & Bucher, Dirk (2012). Dopamine modulation of Ih improves temporal fidelity of spike propagation in a motor axon. Journal of Neuroscience, 35(15), 5106-5119.
Ballo, A W, & Nadim, Farzan, & Bucher, Dirk M. (2012). Dopamine modulation of Ih improves temporal fidelity of spike propagation in an unmyelinated axon.. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(15), 5106-19.
Nadim, Farzan, & Zhou, Shunbing, & Zhao, Lian, & Bose, Amitabha K. (2011). Inhibitory feedback promotes stability in an oscillatory network. Journal of Neural Engineering, 8, 065001.
Zhao, Shunbing, & Sheibanie, A mir Farzad, & Oh, Myongkeun, & Rabbah, Pascale, & Nadim, Farzan (2011). Peptide neuromodulation of synaptic dynamics in an oscillatory network. Journal of Neuroscience, 31(39), 13991-14004.
Johnson, Bruce, & Brown, J M, & Kvarta, M D, & Schneider, L R, & Nadim, Farzan, & Harris-Warrick, Ronald M (2011). Differential Modulation of Synaptic Strength and Timing Regulate Synaptic Efficacy in a Motor Network. 293-304.
Tseng, Hua-an, & Nadim, Farzan (2010). The membrane potential waveform of bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. Journal of Neuroscience, 30(32), 10809-10819.
Ballo, Alexander, & Keene, Jennifer, & Troy, Patricia, & Goeritz, Marie, & Nadim, Farzan, & Bucher, Dirk (2010). Dopamine modulates Ih in a motor axon. Journal of Neuroscience, 30(25), 8425-8434.
Ballo, A W, & Keene, J C, & Troy, P J, & Goeritz, M L, & Nadim, Farzan, & Bucher, Dirk M. (2010). Dopamine modulates Ih in a motor axon.. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(25), 8425-34.
Zhao, Shunbing, & Golowasch, Jorge P., & Nadim, Farzan (2010). Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current. Frontiers in Behavioral Neuroscience, 4(21),
Daur, Nelly, & Nadim, Farzan, & Stein, Wolfgang (2009). Regulation of motor patterns by the central spike initiation zone of a sensory neuron. European J of Neuroscience, 30, 808-822.
Nadim, Farzan, & Golowasch, Jorge P., & Thomas, Gladis, & Taylor, Adam, & Khalil, Christopher, & Pineda, Arlene, & Patel, Arif (2009). Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in non-isopotential neurons. Journal of Neurophysiology, 102, 2161-2175.
Nadim, Farzan, & Tohidi, Vahid (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. Journal of Neuroscience, 29(20), 6427-6435.
Nadim, Farzan, & Soto-Trevino, Cristina, & Clewley, Robert (2009). Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26, 75-90.
Nadim, Farzan, & Brezina, Vlad, & Destexhe, Alain, & Linster, Christiane (2008). State dependence of network output: modeling and experiments. Journal of Neuroscience, 28, 11806-11813.
Gansert, Juliane, & Golowasch, Jorge P., & Nadim, Farzan (2007). Sustained rhythmic activity in gap- neurons depends on the diameter of coupled dendrites. Journal of Neurophysiology, 98, 3450-3460.
Daur, Nelly, & Nadim, Farzan, & Bucher, Dirk M. (2021). Synaptic Dynamics Convey Differential Sensitivity to Input Pattern Changes in Two Muscles Innervated by the Same Motor Neurons. eNeuro , 8(6),
Rotstein, Horacio G., & Nadim, Farzan (2020). Neurons and neural networks: Computational models. Encyclopedia of Life Sciences. John Wiley \& Sons, Ltd: Chichester,
Rotstein, Horacio G., & Nadim, Farzan (2019). Membrane potential resonance arising from responses of neuronal models to oscillatory inputs in current versus voltage clamp. Biological Cybernetics, 113, 373–395.
Martinez, Diana, & Anwar, Haroon, & Bose, Amitabha K., & Bucher, Dirk M., & Nadim, Farzan Short-Term Synaptic Dynamics Control the Activity Phase of Neurons in an Oscillatory Network. eLife,
Martinez, Diana, & Santin, Joseph M, & Schulz, David, & Nadim, Farzan The differential contribution of pacemaker neurons to synaptic transmission in the pyloric network of the Jonah crab, Cancer borealis. Journal of Neurophysiology, 122(4), 1623-1633.
Li , X, & Bucher, Dirk M., & Nadim, Farzan (2018). Distinct Co-Modulation Rules of Synapses and Voltage-Gated Currents Coordinate Interactions of Multiple Neuromodulators.. The Journal of neuroscience : the official journal of the Society for Neuroscience, 38(40), 8549-8562.
Akcay, Zeynep, & Huang, Xinxian, & Nadim, Farzan, & Bose, Amitabha K. (2018). Phase-locking and bistability in neuronal networks with synaptic depression. Physica D: Nonlinear Phenomena, 364, 8-21.
Chen, Yinbo, & Li, Xinping, & Rotstein, Horacio G., & Nadim, Farzan (2016). Membrane potential resonance frequency directly influences network frequency through gap junctions. Journal of Neurophysiology, 116, 1554-1563.
Zhang, Y, & Bucher, Dirk M., & Nadim, Farzan (2017). Ionic mechanisms underlying history-dependence of conduction delay in an unmyelinated axon.. eLife, 6,
Fox, David, & Tseng, Hua-an, & Smolinsky, Tomasz, & Rotstein, Horacio G., & Nadim, Farzan (2017). Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comp Biology,
Golowasch, Jorge P., & Bose, Amitabha K., & Guan, Y., & Salloum, D., & Roeser, A., & Nadim, Farzan (2017). A balance of outward and linear inward ionic currents is required for generation of slow-wave oscillations. Journal of Neurophysiology, 118, 1092-1104.
Anwar, H, & Li , X, & Bucher, Dirk M., & Nadim, Farzan (2017). Functional roles of short-term synaptic plasticity with an emphasis on inhibition.. Current opinion in neurobiology, 43, 71-78.
Daur, N, & Nadim, Farzan, & Bucher, Dirk M. (2016). The complexity of small circuits: the stomatogastric nervous system.. Current opinion in neurobiology, 41, 1-7.
Mouser, Christina, & Bose, Amitabha K., & Nadim, Farzan (2016). The role of electrical coupling in generating and modulating oscillations in a neuronal network. Mathematical Biosciences, 278, 11-21.
Bose, Amitabha K., & Golowasch, Jorge P., & Guan, Yinzheng, & Nadim, Farzan (2014). The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations. Journal of Computational Neuroscience, 37(2), 229-242.
Martinez, Diana, & Tseng, Hua-an, & Nadim, Farzan (2014). The frequency preference of neurons and synapses in a recurrent oscillatory network. J Neuroscience, 34, 12933-12945.
Rotstein, Horacio G., & Nadim, Farzan (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37, 9-28.
Akcay, Zeynep, & Bose, Amitabha K., & Nadim, Farzan (2014). Effects of synaptic plasticity on phase and period locking in a network of two oscillatory neurons. J Mathematical Neuroscience, 4(8), 29.
Rotstein, Horacio G., & Nadim, Farzan (2013). Neurons and neural networks: Computational models. Encyclopedia of Life Sciences (ohn Wiley \& Sons, Ltd: Chicheste), DOI: 10.1002/9780470015902.a0000089.pub2.
Rotstein, Horacio G., & Nadim, Farzan (2013). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, Online First, 1 - 20.
Oh, Myongkeun, & Zhao, Shunbing, & Matveev, Victor V., & Nadim, Farzan (2012). Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. Journal of Computational Neuroscience, 33(3), 573-585.
Ballo, Alexander, & Nadim, Farzan, & Bucher, Dirk (2012). Dopamine modulation of Ih improves temporal fidelity of spike propagation in a motor axon. Journal of Neuroscience, 35(15), 5106-5119.
Ballo, A W, & Nadim, Farzan, & Bucher, Dirk M. (2012). Dopamine modulation of Ih improves temporal fidelity of spike propagation in an unmyelinated axon.. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(15), 5106-19.
Nadim, Farzan, & Zhou, Shunbing, & Zhao, Lian, & Bose, Amitabha K. (2011). Inhibitory feedback promotes stability in an oscillatory network. Journal of Neural Engineering, 8, 065001.
Zhao, Shunbing, & Sheibanie, A mir Farzad, & Oh, Myongkeun, & Rabbah, Pascale, & Nadim, Farzan (2011). Peptide neuromodulation of synaptic dynamics in an oscillatory network. Journal of Neuroscience, 31(39), 13991-14004.
Johnson, Bruce, & Brown, J M, & Kvarta, M D, & Schneider, L R, & Nadim, Farzan, & Harris-Warrick, Ronald M (2011). Differential Modulation of Synaptic Strength and Timing Regulate Synaptic Efficacy in a Motor Network. 293-304.
Tseng, Hua-an, & Nadim, Farzan (2010). The membrane potential waveform of bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. Journal of Neuroscience, 30(32), 10809-10819.
Ballo, Alexander, & Keene, Jennifer, & Troy, Patricia, & Goeritz, Marie, & Nadim, Farzan, & Bucher, Dirk (2010). Dopamine modulates Ih in a motor axon. Journal of Neuroscience, 30(25), 8425-8434.
Ballo, A W, & Keene, J C, & Troy, P J, & Goeritz, M L, & Nadim, Farzan, & Bucher, Dirk M. (2010). Dopamine modulates Ih in a motor axon.. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(25), 8425-34.
Zhao, Shunbing, & Golowasch, Jorge P., & Nadim, Farzan (2010). Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current. Frontiers in Behavioral Neuroscience, 4(21),
Daur, Nelly, & Nadim, Farzan, & Stein, Wolfgang (2009). Regulation of motor patterns by the central spike initiation zone of a sensory neuron. European J of Neuroscience, 30, 808-822.
Nadim, Farzan, & Golowasch, Jorge P., & Thomas, Gladis, & Taylor, Adam, & Khalil, Christopher, & Pineda, Arlene, & Patel, Arif (2009). Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in non-isopotential neurons. Journal of Neurophysiology, 102, 2161-2175.
Nadim, Farzan, & Tohidi, Vahid (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. Journal of Neuroscience, 29(20), 6427-6435.
Nadim, Farzan, & Soto-Trevino, Cristina, & Clewley, Robert (2009). Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26, 75-90.
Nadim, Farzan, & Brezina, Vlad, & Destexhe, Alain, & Linster, Christiane (2008). State dependence of network output: modeling and experiments. Journal of Neuroscience, 28, 11806-11813.
Gansert, Juliane, & Golowasch, Jorge P., & Nadim, Farzan (2007). Sustained rhythmic activity in gap- neurons depends on the diameter of coupled dendrites. Journal of Neurophysiology, 98, 3450-3460.
COLLAPSE
Chapter
Nadim, Farzan, & Li, Xinping, & Gray, Michael , & Golowasch, Jorge P. (2017). The Role of Electrical Coupling in Rhythm Generation in Small Networks, Academic Press. (pp. 51-78). London: Academic Press
Bucher, Dirk M., & Haspel, Gal, & Golowasch, Jorge P., & Nadim, Farzan (2015). Central Pattern Generators, eLS, John Wiley & Sons. (pp. 1-12). Chichester: eLS, John Wiley & Sons
Bose, Amitabha K., & Nadim, Farzan (2014). Multistability Arising from Synaptic Dynamics, Springer New York. (pp. 1-11). Springer New York
Fox, David M, & Rotstein, Horacio G., & Nadim, Farzan (2014). Bursting in Neurons and Small Networks, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-17). New York: Springer
Golowasch, Jorge P., & Nadim, Farzan (2014). Capacitance, Membrane, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-5). New York: Springer
Bucher, Dirk M., & Haspel, Gal, & Golowasch, Jorge P., & Nadim, Farzan (2015). Central Pattern Generators, eLS, John Wiley & Sons. (pp. 1-12). Chichester: eLS, John Wiley & Sons
Bose, Amitabha K., & Nadim, Farzan (2014). Multistability Arising from Synaptic Dynamics, Springer New York. (pp. 1-11). Springer New York
Fox, David M, & Rotstein, Horacio G., & Nadim, Farzan (2014). Bursting in Neurons and Small Networks, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-17). New York: Springer
Golowasch, Jorge P., & Nadim, Farzan (2014). Capacitance, Membrane, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-5). New York: Springer
SHOW MORE
Bose, Amitabha K., & Nadim, Farzan (2014). Multistability Arising from Synaptic Dynamics, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-11). New York: Springer
Martinez, Diana, & Matveev, Victor V., & Nadim, Farzan (2014). Short-Term Synaptic Plasticity in Central Pattern Generators, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-14). New York: Springer
Nadim, Farzan, & Zhou, Shunbing, & Bose, Amitabha K. (2012). A PRC description of how inhibitory feedback promotes oscillation stability, Eds. Schultheiss, Nathan W.; Prinz, Astrid A.; Butera, Robert J. (Eds.), Phase response curves in neuroscience. (pp. 399-418). Phase response curves in neuroscience
Martinez, Diana, & Matveev, Victor V., & Nadim, Farzan (2014). Short-Term Synaptic Plasticity in Central Pattern Generators, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-14). New York: Springer
Nadim, Farzan, & Zhou, Shunbing, & Bose, Amitabha K. (2012). A PRC description of how inhibitory feedback promotes oscillation stability, Eds. Schultheiss, Nathan W.; Prinz, Astrid A.; Butera, Robert J. (Eds.), Phase response curves in neuroscience. (pp. 399-418). Phase response curves in neuroscience
COLLAPSE
Conference Proceeding
The synaptic effects of ectopic spike initiation and the history dependence of axonal conduction
Frontiers in Neuroscience, July (3rd Quarter/Summer) 2015
Synapses showing a preferred frequency in a reciprocally inhibitory neuronal network
Biomed Central Neuroscience, July (3rd Quarter/Summer) 2010
Using feed-forward networks to infer the activity of feed-back neuronal networks
Biomed Central Neuroscience, July (3rd Quarter/Summer) 2010
A mechanism underlying short-term synaptic dynamics regulated by neuromodulator based on kinetics of Ca currents
Biomed Central Neuroscience, July (3rd Quarter/Summer) 2009
Approximating the phase response curves of square wave bursting neurons.
BMC Neuroscience, July (3rd Quarter/Summer) 2008
Frontiers in Neuroscience, July (3rd Quarter/Summer) 2015
Synapses showing a preferred frequency in a reciprocally inhibitory neuronal network
Biomed Central Neuroscience, July (3rd Quarter/Summer) 2010
Using feed-forward networks to infer the activity of feed-back neuronal networks
Biomed Central Neuroscience, July (3rd Quarter/Summer) 2010
A mechanism underlying short-term synaptic dynamics regulated by neuromodulator based on kinetics of Ca currents
Biomed Central Neuroscience, July (3rd Quarter/Summer) 2009
Approximating the phase response curves of square wave bursting neurons.
BMC Neuroscience, July (3rd Quarter/Summer) 2008
Other
Dynamic Neural Networks: The Stomatogastric System
October (4th Quarter/Autumn) 2012
Dynamic Neural Networks: The Stomatogastric System
November 2011
Dynamic Neural Networks: The Stomatogastric System
November 2010
October (4th Quarter/Autumn) 2012
Dynamic Neural Networks: The Stomatogastric System
November 2011
Dynamic Neural Networks: The Stomatogastric System
November 2010