Jorge Golowasch
Jorge Golowasch
Professor and Research Director, Biological Sciences, Biological Sciences
CKB 420F
About Me
I was born and grew up in Santiago, Chile. My college education was at the Faculty of Sciences, Universidad de Chile (major in Biology, concentration in Neuroscience). I moved to the US in 1986 to do a PhD at Brandeis University, then did post-docs at the Ecole Normale Superieure (Paris, France), U. Kaiserslautern (Germany) and at HHMI (Mass Gen Hospital, Boston).
Education
Ph.D.; Brandeis University; Biophysics; 1991
B.S.; Faculty of Sciences, Universida de Chile; Biology; 1984
B.S.; Faculty of Sciences, Universida de Chile; Biology; 1984
2024 Fall Courses
BIOL 700B - MASTER'S PROJECT
BIOL 790A - DOCT DISSERTATION & RESRCH
BIOL 790D - DOCT DISSERTATION & RESRCH
BIOL 792C - PRE-DOCTORAL RESEARCH
BIOL 315 - PRINCIPLES OF NEUROBIOLOGY
BIOL 491 - SENIOR PROJECT
BIOL 492 - RESEARCH & INDEPENDENT STUDY
BIOL 790E - DOCTORAL DISSERTATION
BIOL 725 - INDEPENDENT STUDY I
BIOL 726 - INDEPENDENT STUDY II
BIOL 790C - DOCTORAL DISSERTN & RESRCH
BIOL 792B - PRE-DOCTORAL RESEARCH
BIOL 790B - DOCT DISSERTATION & RESRCH
BIOL 790A - DOCT DISSERTATION & RESRCH
BIOL 790D - DOCT DISSERTATION & RESRCH
BIOL 792C - PRE-DOCTORAL RESEARCH
BIOL 315 - PRINCIPLES OF NEUROBIOLOGY
BIOL 491 - SENIOR PROJECT
BIOL 492 - RESEARCH & INDEPENDENT STUDY
BIOL 790E - DOCTORAL DISSERTATION
BIOL 725 - INDEPENDENT STUDY I
BIOL 726 - INDEPENDENT STUDY II
BIOL 790C - DOCTORAL DISSERTN & RESRCH
BIOL 792B - PRE-DOCTORAL RESEARCH
BIOL 790B - DOCT DISSERTATION & RESRCH
Teaching Interests
Neuroscience, Computational Neuroscience/Biology, Cell Biology, Critical Thinking, special topics in neuroscience
Past Courses
BIOL 315: PRINCIPLES OF NEUROBIOLOGY
BIOL 341: INTRO TO NEUROPHYSIOLOGY
BIOL 405: CELL PHYSIOLOGY AND IMAGING
BIOL 447: CELLULAR & SYSTEM NEUR-HONORS
BIOL 447: CELLULAR&SYSTEMS NEUROSC-HON
BIOL 447: CELLULAR&SYSTEMS NEUROSCIENCE
BIOL 447: SYSTEMS NEUROBIOLOGY
BIOL 498: ST: THE NEURON'S FORGOTTEN SIBLING
BIOL 630: CRITICAL THINKING FOR LIFE SCI
BIOL 641: SYSTEMS NEUROSCIENCE
BIOL 698: INTRO TO NEUROPHYSIOLOGY
BIOL 698: ST:
BIOL 698: ST: THE NEURON'S FORGOTTEN SIBLING
BIOL 698: ST:NEUROSCIENCE
R120 524: CELL MOLEC DEV
BIOL 341: INTRO TO NEUROPHYSIOLOGY
BIOL 405: CELL PHYSIOLOGY AND IMAGING
BIOL 447: CELLULAR & SYSTEM NEUR-HONORS
BIOL 447: CELLULAR&SYSTEMS NEUROSC-HON
BIOL 447: CELLULAR&SYSTEMS NEUROSCIENCE
BIOL 447: SYSTEMS NEUROBIOLOGY
BIOL 498: ST: THE NEURON'S FORGOTTEN SIBLING
BIOL 630: CRITICAL THINKING FOR LIFE SCI
BIOL 641: SYSTEMS NEUROSCIENCE
BIOL 698: INTRO TO NEUROPHYSIOLOGY
BIOL 698: ST:
BIOL 698: ST: THE NEURON'S FORGOTTEN SIBLING
BIOL 698: ST:NEUROSCIENCE
R120 524: CELL MOLEC DEV
Research Interests
Neuroscience: mechanisms that control the stability of neuronal activity, analytical and quantitative analysis of electrical properties of neurons and networks, neuromodulation, circadian activity, glia-neuron interactions.
Journal Article
Schneider, Anna C, & Fox, David, & Itani, Omar, & Golowasch, Jorge P., & Bucher, Dirk M., & Nadim, Farzan (2021). Frequency-Dependent Action of Neuromodulation. eNeuro , 8(6),
Tran, Trinh, & Unal, Cagri T, & Zaborszky, Laszlo, & Kirkwood, Alfredo, & Rotstein, Horacio G., & Golowasch, Jorge P. (2019). Ionic current correlations are ubiquitous across phyla. Scientific Reports, 9, 1687.
Golowasch, Jorge P., & Bose, Amitabha K., & Guan, Y., & Salloum, D., & Roeser, A., & Nadim, Farzan (2017). A balance of outward and linear inward ionic currents is required for generation of slow-wave oscillations. Journal of Neurophysiology, 118, 1092-1104.
Golowasch, Jorge P. (2017). Activation mechanism of a neuromodulator-gated pacemaker ionic current.. J. Neurophysiology, 118, 595–609.
Rotstein, Horacio G., & Olarinre, Motolani, & Golowasch, Jorge P. (2016). Dynamic compensation mechanism give rise to period and duty cycle level sets in oscillatory neuronal models. Journal of Neurophysiology, Online First,
Tran, Trinh, & Unal, Cagri T, & Zaborszky, Laszlo, & Kirkwood, Alfredo, & Rotstein, Horacio G., & Golowasch, Jorge P. (2019). Ionic current correlations are ubiquitous across phyla. Scientific Reports, 9, 1687.
Golowasch, Jorge P., & Bose, Amitabha K., & Guan, Y., & Salloum, D., & Roeser, A., & Nadim, Farzan (2017). A balance of outward and linear inward ionic currents is required for generation of slow-wave oscillations. Journal of Neurophysiology, 118, 1092-1104.
Golowasch, Jorge P. (2017). Activation mechanism of a neuromodulator-gated pacemaker ionic current.. J. Neurophysiology, 118, 595–609.
Rotstein, Horacio G., & Olarinre, Motolani, & Golowasch, Jorge P. (2016). Dynamic compensation mechanism give rise to period and duty cycle level sets in oscillatory neuronal models. Journal of Neurophysiology, Online First,
SHOW MORE
Bose, Amitabha K., & Golowasch, Jorge P., & Guan, Yinzheng, & Nadim, Farzan (2014). The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations. Journal of Computational Neuroscience, 37(2), 229-242.
Golowasch, Jorge P. (2014). Mechanisms underlying nervous system plasticity and stability. . Bioscience, 64(7), 570-580.
Zhao, Shunbig, & Golowasch, Jorge P. (2012). Ionic Current Correlations Underlie the Global Tuning of Large Numbers of Neuronal Activity Attributes. Journal of Neuroscience, 32(39), 13380-13388.
Unal, Cagri T, & Golowasch, Jorge P., & Zaborszky, Laszlo (2012). Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. Frontiers in behavioral Neuroscience, 6(21), 1-14.
Temporal, Simone, & Desai, Mohati, & Khorkova, Olga, & Varghese, Gladis, & Dai, Aihua, & Schulz, David, & Golowasch, Jorge P. (2011). Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. Journal of Neurophysiology, In press,
Zhang, Yili, & Golowasch, Jorge P. (2011). Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms. Journal of Computational Neuroscience, In press,
Zhao, Shunbing, & Golowasch, Jorge P., & Nadim, Farzan (2010). Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current. Frontiers in Behavioral Neuroscience, 4(21),
Nadim, Farzan, & Golowasch, Jorge P., & Thomas, Gladis, & Taylor, Adam, & Khalil, Christopher, & Pineda, Arlene, & Patel, Arif (2009). Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in non-isopotential neurons. Journal of Neurophysiology, 102, 2161-2175.
Zhang, Yili, & Olga, Khorkova, & Rosa, Rodriguez, & Golowasch, Jorge P. (2008). Activity and Neuromodulatory Input Contribute to the Recovery of Rhythmic Output After Decentralization in a Central Pattern Generator. Journal of Neurophysiology, 101, 372-386.
Gansert, Juliane, & Golowasch, Jorge P., & Nadim, Farzan (2007). Sustained rhythmic activity in gap- neurons depends on the diameter of coupled dendrites. Journal of Neurophysiology, 98, 3450-3460.
Golowasch, Jorge P. (2014). Mechanisms underlying nervous system plasticity and stability. . Bioscience, 64(7), 570-580.
Zhao, Shunbig, & Golowasch, Jorge P. (2012). Ionic Current Correlations Underlie the Global Tuning of Large Numbers of Neuronal Activity Attributes. Journal of Neuroscience, 32(39), 13380-13388.
Unal, Cagri T, & Golowasch, Jorge P., & Zaborszky, Laszlo (2012). Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. Frontiers in behavioral Neuroscience, 6(21), 1-14.
Temporal, Simone, & Desai, Mohati, & Khorkova, Olga, & Varghese, Gladis, & Dai, Aihua, & Schulz, David, & Golowasch, Jorge P. (2011). Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. Journal of Neurophysiology, In press,
Zhang, Yili, & Golowasch, Jorge P. (2011). Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms. Journal of Computational Neuroscience, In press,
Zhao, Shunbing, & Golowasch, Jorge P., & Nadim, Farzan (2010). Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current. Frontiers in Behavioral Neuroscience, 4(21),
Nadim, Farzan, & Golowasch, Jorge P., & Thomas, Gladis, & Taylor, Adam, & Khalil, Christopher, & Pineda, Arlene, & Patel, Arif (2009). Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in non-isopotential neurons. Journal of Neurophysiology, 102, 2161-2175.
Zhang, Yili, & Olga, Khorkova, & Rosa, Rodriguez, & Golowasch, Jorge P. (2008). Activity and Neuromodulatory Input Contribute to the Recovery of Rhythmic Output After Decentralization in a Central Pattern Generator. Journal of Neurophysiology, 101, 372-386.
Gansert, Juliane, & Golowasch, Jorge P., & Nadim, Farzan (2007). Sustained rhythmic activity in gap- neurons depends on the diameter of coupled dendrites. Journal of Neurophysiology, 98, 3450-3460.
COLLAPSE
Chapter
Nadim, Farzan, & Li, Xinping, & Gray, Michael , & Golowasch, Jorge P. (2017). The Role of Electrical Coupling in Rhythm Generation in Small Networks, Academic Press. (pp. 51-78). London: Academic Press
Bucher, Dirk M., & Haspel, Gal, & Golowasch, Jorge P., & Nadim, Farzan (2015). Central Pattern Generators, eLS, John Wiley & Sons. (pp. 1-12). Chichester: eLS, John Wiley & Sons
Golowasch, Jorge P., & Nadim, Farzan (2014). Capacitance, Membrane, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-5). New York: Springer
Golowasch, Jorge P. (2014). Stability and Homeostasis in Small Network Central Pattern Generators, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 2858-2864). New York: Springer
Bucher, Dirk M., & Haspel, Gal, & Golowasch, Jorge P., & Nadim, Farzan (2015). Central Pattern Generators, eLS, John Wiley & Sons. (pp. 1-12). Chichester: eLS, John Wiley & Sons
Golowasch, Jorge P., & Nadim, Farzan (2014). Capacitance, Membrane, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-5). New York: Springer
Golowasch, Jorge P. (2014). Stability and Homeostasis in Small Network Central Pattern Generators, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 2858-2864). New York: Springer
Technical Report
Single-Neuron Gene Expression Analysis Using the Maxwell® 16 LEV System in the Neural Systems and Behavior Course
Promega Corporation Web site, January (1st Quarter/Winter) 2014
Promega Corporation Web site, January (1st Quarter/Winter) 2014
Other
Dynamic Neural Networks: The Stomatogastric System
October (4th Quarter/Autumn) 2012
Dynamic Neural Networks: The Stomatogastric System
November 2011
Dynamic Neural Networks: The Stomatogastric System
November 2010
Dynamic Neural Networks: The Stomatogastric System
October (4th Quarter/Autumn) 2009
October (4th Quarter/Autumn) 2012
Dynamic Neural Networks: The Stomatogastric System
November 2011
Dynamic Neural Networks: The Stomatogastric System
November 2010
Dynamic Neural Networks: The Stomatogastric System
October (4th Quarter/Autumn) 2009
Conference Proceeding
Approximating the phase response curves of square wave bursting neurons.
BMC Neuroscience, July (3rd Quarter/Summer) 2008
BMC Neuroscience, July (3rd Quarter/Summer) 2008