Horacio Rotstein
Horacio Rotstein
Professor, Biological Sciences
CKB 420-D Central King Building (CKB)
Education
Ph.D.; Technion, Israel Institute of Technology; Applied Mathematics; 1998
M.S.; Technion, Israel Institute of Technology; Applied Mathematics; 1994
Licenciado en Quimica (5 years program); Universidad Nacional del Sur; Icenciado En Quimica (5 Years Program) Chemistry; 1989
M.S.; Technion, Israel Institute of Technology; Applied Mathematics; 1994
Licenciado en Quimica (5 years program); Universidad Nacional del Sur; Icenciado En Quimica (5 Years Program) Chemistry; 1989
Website
2024 Fall Courses
BIOL 491 - SENIOR PROJECT
BIOL 790A - DOCT DISSERTATION & RESRCH
BIOL 790E - DOCTORAL DISSERTATION
BIOL 635 - INTRO TO COMP NEUROSCIENCE
MATH 430 - ANALYTICL & COMPUTNL NEUROSCI
BIOL 492 - RESEARCH & INDEPENDENT STUDY
BIOL 725 - INDEPENDENT STUDY I
BIOL 726 - INDEPENDENT STUDY II
BIOL 790C - DOCTORAL DISSERTN & RESRCH
BIOL 432 - INTRO TO COMP NEUROSCIENCE
MATH 635 - ANALYTCL COMPUTATIONAL NEURO
BIOL 790B - DOCT DISSERTATION & RESRCH
BIOL 700B - MASTER'S PROJECT
BIOL 792B - PRE-DOCTORAL RESEARCH
BIOL 790D - DOCT DISSERTATION & RESRCH
BIOL 792C - PRE-DOCTORAL RESEARCH
BIOL 790A - DOCT DISSERTATION & RESRCH
BIOL 790E - DOCTORAL DISSERTATION
BIOL 635 - INTRO TO COMP NEUROSCIENCE
MATH 430 - ANALYTICL & COMPUTNL NEUROSCI
BIOL 492 - RESEARCH & INDEPENDENT STUDY
BIOL 725 - INDEPENDENT STUDY I
BIOL 726 - INDEPENDENT STUDY II
BIOL 790C - DOCTORAL DISSERTN & RESRCH
BIOL 432 - INTRO TO COMP NEUROSCIENCE
MATH 635 - ANALYTCL COMPUTATIONAL NEURO
BIOL 790B - DOCT DISSERTATION & RESRCH
BIOL 700B - MASTER'S PROJECT
BIOL 792B - PRE-DOCTORAL RESEARCH
BIOL 790D - DOCT DISSERTATION & RESRCH
BIOL 792C - PRE-DOCTORAL RESEARCH
Teaching Interests
Applied Mathematics, Mathematical Biology, Dynamical Systems, Computational Neuroscience, Systems Biology
Past Courses
BIOL 432: INTRO TO COMP NEUROSCIENCE
BIOL 436: ADVANCED NEUROSCIENCE MODELING
BIOL 470: DYNAMIC PRINC IN SYSTEMS BIOL
BIOL 498: SPECIAL TOPICS IN BIOLOGY
BIOL 631: PROPOSAL PREP FOR EXTNL FUNDIN
BIOL 635: INTRO TO COMP NEUROSCIENCE
BIOL 636: ADVANCED COMP NEUROSCIENCE
BIOL 672: COMPUTATIONAL SYSTEMS BIOLOGY
BIOL 698: ST: COMPUTATIONAL NEUROSCIENCE
BIOL 731: PROPOSAL PREP FOR EXTNL FUNDIN
BIOL 791: BIOLOGY SEMINAR
MATH 111: CALCULUS I
MATH 111: CALCULUS I - HONORS
MATH 112: CALCULUS II
MATH 112: CALCULUS II - HONORS
MATH 211: CALCULUS IIIA
MATH 222: DIFFERENTIAL EQUATIONS
MATH 337: LINEAR ALGEBRA
MATH 371: PHYSIOLOGY AND MEDICINE
MATH 430: ANALYTICAL AND COMPUTATIONAL NEUROSCIENCE
MATH 430: ANALYTICL & COMPUTATNL NEUROSCI
MATH 430: ANALYTICL & COMPUTNL NEUROSCI
MATH 431: SYSTEMS COMPUTATIONAL NEUROSCIENCE
MATH 451: METHODS APPL MATH II
MATH 473: INTERMED DIFFEREN EQUATN
MATH 635: ANALYTCL COMPUTATIONAL NEURO
MATH 635: ANALYTICAL COMPUTATIONAL NEUROS
MATH 635: ANALYTICAL COMPUTATIONAL NEUROSCIENCE
MATH 636: SYSTEMS COMPUTATIONAL NEUROSCIENCE
MATH 636: SYSTM COMPUTATNL NEUROSCI
MATH 637: FOUND OF MATHEMATICAL BIOLOGY
BIOL 436: ADVANCED NEUROSCIENCE MODELING
BIOL 470: DYNAMIC PRINC IN SYSTEMS BIOL
BIOL 498: SPECIAL TOPICS IN BIOLOGY
BIOL 631: PROPOSAL PREP FOR EXTNL FUNDIN
BIOL 635: INTRO TO COMP NEUROSCIENCE
BIOL 636: ADVANCED COMP NEUROSCIENCE
BIOL 672: COMPUTATIONAL SYSTEMS BIOLOGY
BIOL 698: ST: COMPUTATIONAL NEUROSCIENCE
BIOL 731: PROPOSAL PREP FOR EXTNL FUNDIN
BIOL 791: BIOLOGY SEMINAR
MATH 111: CALCULUS I
MATH 111: CALCULUS I - HONORS
MATH 112: CALCULUS II
MATH 112: CALCULUS II - HONORS
MATH 211: CALCULUS IIIA
MATH 222: DIFFERENTIAL EQUATIONS
MATH 337: LINEAR ALGEBRA
MATH 371: PHYSIOLOGY AND MEDICINE
MATH 430: ANALYTICAL AND COMPUTATIONAL NEUROSCIENCE
MATH 430: ANALYTICL & COMPUTATNL NEUROSCI
MATH 430: ANALYTICL & COMPUTNL NEUROSCI
MATH 431: SYSTEMS COMPUTATIONAL NEUROSCIENCE
MATH 451: METHODS APPL MATH II
MATH 473: INTERMED DIFFEREN EQUATN
MATH 635: ANALYTCL COMPUTATIONAL NEURO
MATH 635: ANALYTICAL COMPUTATIONAL NEUROS
MATH 635: ANALYTICAL COMPUTATIONAL NEUROSCIENCE
MATH 636: SYSTEMS COMPUTATIONAL NEUROSCIENCE
MATH 636: SYSTM COMPUTATNL NEUROSCI
MATH 637: FOUND OF MATHEMATICAL BIOLOGY
Research Interests
Mathematical and Computational Neuroscience, Dynamical Systems, Mathematical and Computational Biology and Chemistry, Systems Biology
Journal Article
Rotstein, Horacio G., & Sant, David, & Amendolara, Alfred , & Fortune, Eric S. (2023). LSTM-Based Recurrent Neural Network Provides Effective Short Term Flu Forecasting. BMC Publich Health, 23, 1788.
Mount, Rebeca , & Chialva, Ulises, & Pena, Rodrigo, & Hasselmo, Michael, & Rotstein, Horacio G., & Han, xue (2023). Cellular voltage rhythmicity organizes distinct spiking output modes in the hippocampus. Cell Reports, 42, 112906.
Chialva, Ulises, & Gonzalez Bosca, Vicente , & Rotstein, Horacio G. (2023). Low-dimensional models of single neurons: A review. Biological Cybernetic, 117, 163-183.
Li, Xinping , & Itani, Omar, & Bucher, Dirk M., & Rotstein, Horacio G., & Nadim, Farzan (2023). Distinct Mechanisms Underlie Electrical Coupling Resonance and Its Interaction with Membrane Potential Resonance. Frontiers in Systems Biology, 3, 1122433.
Levenstein, Daniel , & Authors, Manny, & Authors, Manny, & Rotstein, Horacio G., & Nadim, Farzan, & Redish, David (2023). On the role of theory and modeling in neuroscience. The Journal of Neuroscience, 43, 1074-1088.
Mount, Rebeca , & Chialva, Ulises, & Pena, Rodrigo, & Hasselmo, Michael, & Rotstein, Horacio G., & Han, xue (2023). Cellular voltage rhythmicity organizes distinct spiking output modes in the hippocampus. Cell Reports, 42, 112906.
Chialva, Ulises, & Gonzalez Bosca, Vicente , & Rotstein, Horacio G. (2023). Low-dimensional models of single neurons: A review. Biological Cybernetic, 117, 163-183.
Li, Xinping , & Itani, Omar, & Bucher, Dirk M., & Rotstein, Horacio G., & Nadim, Farzan (2023). Distinct Mechanisms Underlie Electrical Coupling Resonance and Its Interaction with Membrane Potential Resonance. Frontiers in Systems Biology, 3, 1122433.
Levenstein, Daniel , & Authors, Manny, & Authors, Manny, & Rotstein, Horacio G., & Nadim, Farzan, & Redish, David (2023). On the role of theory and modeling in neuroscience. The Journal of Neuroscience, 43, 1074-1088.
SHOW MORE
Mondal, Yugarshi, & Pena, Rodrigo, & Rotstein, Horacio G. (2022). Temporal filters in response to presynaptic spike trains: Interplay of cellular, synaptic and short-term plasticity time scales . J. Comp. Neurscci., Online,
Stark, Eran, & Levi, Amir, & Rotstein, Horacio G. (2022). Neuronal resonance can be generated independently at distinct levels of organization . PLoS Computational Biology, 18:e1010364,
Khan, Emel , & Saghafi, Soheil, & Diekman, Casey O., & Rotstein, Horacio G. (2022). The emergence of polyglot entrainment responses to periodic inputs in vicinities of a Hopf bifurcation. Chaos: : A journal of Nonlinear Science, 32:063137,
Pena, Rodrigo, & Rotstein, Horacio G. (2022). Oscillations and variability in neuronal systems: interplay of autonomous transient dynamics and fast deterministic fluctuations. J. Comp. Neurosci., 50:331-355,
Rotstein, Horacio G. (2022). Nonlinearities shape the response patterns to oscillatory inputs in an electrochemical cell model: resonance and more complex patterns. SIAM J. Appl. Dyn. Sys. (SIADS), 21:500-522,
Lederman, Dylan , & Patel, Raghav, & Itani, Omar , & Rotstein, Horacio G. (2022). Parameter estimation in the age of degeneracy and unidentifiability. Mathematics, 10, 170.
Pena, Rodrigo, & Rotstein, Horacio G. (2022). The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: emergence and loss of resonance and variability. Biol. Cyb., 116:163-190,
Churki, Alexander, & Kriss, Stephanie , & Uziel, Asher, & Goyal, Ashish, & Rotstein, Horacio G., & Dahari, Harel, & Barash, Danny (2021). Machine learning for mathematical models of HCV kinetics. Mathematical Biosciences , 343, 108756.
Reves-Szemere, Juliana , & Rotstein, Horacio G., & Ventura, Alejandra (2021). Frequency preference response in covalent modification cycles under substrate sequestration conditions. Nature (npj) Systems Biology and Applications, 7, 32 (article number).
Bel, Andrea, & Cobiaga, Romina, & Reartes, Walter, & Rotstein, Horacio G. (2021). Periodic solutions in threshold-linear networks and their entrainment. SIAM J Applied Dyn Sys (SIADS), 20, 1177-1208.
Ito, Takuya, & Brincat, Scott, & Siegel, Markus, & Mili, Ravi D, & He, Biyu, & Miller, Earl K, & Rotstein, Horacio G., & Cole, Michael W (2020). Task-evoked activity quenches neural correlations and variability in large-scale brain systems. PLoS Computational Biology,
Rotstein, Horacio G., & Nadim, Farzan (2020). Neurons and neural networks: Computational models. Encyclopedia of Life Sciences. John Wiley \& Sons, Ltd: Chichester,
Tabak , Esteban , & Rotstein, Horacio G. (2019). Analysis of spike-driven processes through attributable components . Comm Math Sci, 17, 1177-1192.
Pena, Rodrigo, , & Lima, Vinicius, , & Shimoura, Renan, , & Ceballos, Cesar, , & Rotstein, Horacio G., & Roque, Antonio, (2019). Asymmetrical voltage response in resonant neurons shaped by nonlinearities. Chaos, 29, 103135 (article number).
Rotstein, Horacio G., & Nadim, Farzan (2019). Membrane potential resonance arising from responses of neuronal models to oscillatory inputs in current versus voltage clamp. Biological Cybernetics, 113, 373–395.
Bel, Andrea, , & Rotstein, Horacio G. (2019). Resonance-based mechanisms of generation of relaxation oscillations in networks of non-oscillatory neurons. Trends in Mathematics: Research Perspectives (CRM Barcelona, Summer 2018), 2018,
Bel, Andrea , & Torresi, Ana, & Rotstein, Horacio G. (2019). Inhibition-based relaxation oscillations emerge in resonator networks. Mathematical Modeling of Natural Phenomena, 14, 405 (article number).
Bel, Andrea, & Rotstein, Horacio G. (2019). Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations . Journal of Computational Neuroscience, 46, 169-195.
Leiser, Randolph J, & Rotstein, Horacio G. (2019). Network resonance: impedance interactions via a frequency response alternating map (FRAM). SIAM Journal of Applied Dynamical Systems (SIADS), 18, 769-807.
Tran, Trinh, & Unal, Cagri T, & Zaborszky, Laszlo, & Kirkwood, Alfredo, & Rotstein, Horacio G., & Golowasch, Jorge P. (2019). Ionic current correlations are ubiquitous across phyla. Scientific Reports, 9, 1687.
Rotstein, Horacio G. (2018). Subthreshold amplitude and phase resonance in single neurons: 2D models. Encyclopedia of Computational Neuroscience,
Rotstein, Horacio G. (2018). Subthreshold antiresonance and antiphasonance in single neurons: 3D models . Encyclopedia of Computational Neuroscience,
Zhou, Julia , & Vo, Theodore, & Rotstein, Horacio G., & McCarthy, Michelle , & Kopell, Nancy (2018). M-current expands the range of gamma frequency inputs to which the neuronal target entrains. Journal of Mathematical Neuroscience, 8, 13.
Turnquist, Axel G. R., & Rotstein, Horacio G. (2018). Quadratization: From conductance-based models to caricature models with parabolic nonlinearities. Encyclopedia of Computational Neuroscience,
Kass, Robert, & Amari, Shun-ichi, & Arai, Kensuke, & Brown, Emery, & Diekman, Casey O., & Diesmann, Markus, & Doiron, Brent, & Eden, Uri, & Fairhall, Adrienne, & Fiddyment, Grant, & Fukai, Tomoki, & Grun, Sonja, & Harrison, Matthew, & Helias, Moritz, & Nakahara, Hiroyuki, & Teramae, Jun-nosuke, & Thomas, Peter J, & Reimers, Mark, & Rodu, Jordan, & Rotstein, Horacio G., & Shea-Brown, Eric, & Shimazaki, Hideaki, & Shinomoto, Shigeru, & Yu, Byron, & Kramer, Mark (2018). Computational neuroscience: mathematical and statistical perspectives. Annual Review of Statistics and its Applications, 5(1), 183-214.
Burke, Dennis, & Rotstein, Horacio G., & Álvarez, Verónica (2017). Striatal local circuitry: a new framework for lateral inhibition . Neuron,
Rotstein, Horacio G. (2017). Spiking resonances in models with the same slow resonant and fast amplifying ionic currents but different subthreshold dynamic properties. Journal of Computational Neuroscience,
Rotstein, Horacio G., & Schneider, Elisa , & Szczupak, Lidia (2017). Feedback signal from motoneurons influences a rhythmic pattern generator. The Journal of Neuroscience,
Leiser, Randolph J. , & Rotstein, Horacio G. (2017). Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity. Physical Review E,
Rotstein, Horacio G. (2017). Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics. Journal of Computational Neuroscience,
Chen, Yinbo, & Li, Xinping, & Rotstein, Horacio G., & Nadim, Farzan (2016). Membrane potential resonance frequency directly influences network frequency through gap junctions. Journal of Neurophysiology, 116, 1554-1563.
Fox, David, & Tseng, Hua-an, & Smolinsky, Tomasz, & Rotstein, Horacio G., & Nadim, Farzan (2017). Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comp Biology,
Rotstein, Horacio G. (2017). The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. Journal of Computational Neuroscience,
Rotstein, Horacio G., & Olarinre, Motolani, & Golowasch, Jorge P. (2016). Dynamic compensation mechanism give rise to period and duty cycle level sets in oscillatory neuronal models. Journal of Neurophysiology, Online First,
Espanol, Malena, & Rotstein, Horacio G. (2015). Complex mixed-mode oscillatory patterns in a periodically forced excitable Oregonator. Chaos, 25, 064601 (18 pages).
Schindewolf, Craig, & Kim, Donwgook, & Bel, Andrea, & Rotstein, Horacio G. (2015). Complex patterns in networks hyperexcitable neurons with multiple time scales. Theoretical Computer Science C - Natural Computing, focus issue on "Brain and Neural Networks Computing,
Rotstein, Horacio G. (2015). Cluster-size dynamics: A phenomenological model for the interaction between coagulation and fragmentation. Journal of Chemical Physics, 142, 224101 (11 pages).
Rotstein, Horacio G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents . Journal of Computational Neuroscience, 38, 325 - 354.
Rotstein, Horacio G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. J Comp Neurosci, 38, 325-354.
Rotstein, Horacio G., & Nadim, Farzan (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37, 9-28.
Rotstein, Horacio G. (2014). Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. Journal of Mathematical Neuroscience, 4, 1 - 41 (article number 4).
Kaper, Tasso J., & Kramer, Mark A., & Rotstein, Horacio G. (2013). Introduction to the focus issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment . Chaos , 23, 046001.
Rotstein, Horacio G. (2013). Preferred frequency responses to oscillatory inputs in an electrochemical cell model: Linear amplitude and phase resonance . Physical Review E, 88, 062913 .
Rotstein, Horacio G., & Nadim, Farzan (2013). Neurons and neural networks: Computational models. Encyclopedia of Life Sciences (ohn Wiley \& Sons, Ltd: Chicheste), DOI: 10.1002/9780470015902.a0000089.pub2.
Rotstein, Horacio G. (2013). Abrupt and gradual transitions between low and hyperexcited firing frequencies in neuronal models with fast synaptic excitation: A comparative study. Chaos,
Stark, Eran, & Eichler, Ronny, & Roux, Lisa , & Fujisawa, Shigeyoshi, & Rotstein, Horacio G., & Buzsaki, Gyorgy (2013). Inhibition induced theta resonance in cortical circuits. Neuron, 80, 1263 - 1276.
Rotstein, Horacio G., & Nadim, Farzan (2013). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, Online First, 1 - 20.
Rotstein, Horacio G., & Wu, Hui (2012). Swing, release, and escape mechanisms contribute to the generation of phase-locked patterns in a globablly coupled FitzHugh-Nagumo model. Physical Review E, 35.
Rotstein, Horacio G., & Wu, Hui (2012). Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system. The Journal of Chemical Physics, 137, 104908 (1-20).
Rotstein, Horacio G., & Coombes, Stephen, & Gheorghe, Ana M (2012). Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo type. SIAM Journal on Applied Dynamical Systems (SIADS), 11, 135 - 180.
Kispersky, Tilman , & White, John A., & Rotstein, Horacio G. (2010). The Mechanism of abrupt transition from normal to hyperexcitable (epileptic) spiking activity in medial entorhinal cortex layer II stellate cells. PLoS One, 5, e13697 (1-21).
Boubendir, Yassine, & Mendez, Vicenc, & Rotstein, Horacio G. (2010). Dynamics of one- and two-dimensional fronts in a bistable equation with delayed global coupling: localization and control.. Physical Review E, 82(1539-3755 (Print) - 1550-2376 (Online) ), 036601 (1-20).
Rotstein, Horacio G., & Jalics, Jozsi, & Krupa, Martin (2010). Mixed-mode oscillations in a three time scale system of ODEs motivated by a neural model. Dynamical Systems: An International Journal, iFirst, 1-38.
Rotstein, Horacio G., & Wechselberger, Martin , & Kopell, Nancy (2008). Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM Journal on Applied Dynamical Systems (SIADS), 7, 1582 - 1611.
Stark, Eran, & Levi, Amir, & Rotstein, Horacio G. (2022). Neuronal resonance can be generated independently at distinct levels of organization . PLoS Computational Biology, 18:e1010364,
Khan, Emel , & Saghafi, Soheil, & Diekman, Casey O., & Rotstein, Horacio G. (2022). The emergence of polyglot entrainment responses to periodic inputs in vicinities of a Hopf bifurcation. Chaos: : A journal of Nonlinear Science, 32:063137,
Pena, Rodrigo, & Rotstein, Horacio G. (2022). Oscillations and variability in neuronal systems: interplay of autonomous transient dynamics and fast deterministic fluctuations. J. Comp. Neurosci., 50:331-355,
Rotstein, Horacio G. (2022). Nonlinearities shape the response patterns to oscillatory inputs in an electrochemical cell model: resonance and more complex patterns. SIAM J. Appl. Dyn. Sys. (SIADS), 21:500-522,
Lederman, Dylan , & Patel, Raghav, & Itani, Omar , & Rotstein, Horacio G. (2022). Parameter estimation in the age of degeneracy and unidentifiability. Mathematics, 10, 170.
Pena, Rodrigo, & Rotstein, Horacio G. (2022). The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: emergence and loss of resonance and variability. Biol. Cyb., 116:163-190,
Churki, Alexander, & Kriss, Stephanie , & Uziel, Asher, & Goyal, Ashish, & Rotstein, Horacio G., & Dahari, Harel, & Barash, Danny (2021). Machine learning for mathematical models of HCV kinetics. Mathematical Biosciences , 343, 108756.
Reves-Szemere, Juliana , & Rotstein, Horacio G., & Ventura, Alejandra (2021). Frequency preference response in covalent modification cycles under substrate sequestration conditions. Nature (npj) Systems Biology and Applications, 7, 32 (article number).
Bel, Andrea, & Cobiaga, Romina, & Reartes, Walter, & Rotstein, Horacio G. (2021). Periodic solutions in threshold-linear networks and their entrainment. SIAM J Applied Dyn Sys (SIADS), 20, 1177-1208.
Ito, Takuya, & Brincat, Scott, & Siegel, Markus, & Mili, Ravi D, & He, Biyu, & Miller, Earl K, & Rotstein, Horacio G., & Cole, Michael W (2020). Task-evoked activity quenches neural correlations and variability in large-scale brain systems. PLoS Computational Biology,
Rotstein, Horacio G., & Nadim, Farzan (2020). Neurons and neural networks: Computational models. Encyclopedia of Life Sciences. John Wiley \& Sons, Ltd: Chichester,
Tabak , Esteban , & Rotstein, Horacio G. (2019). Analysis of spike-driven processes through attributable components . Comm Math Sci, 17, 1177-1192.
Pena, Rodrigo, , & Lima, Vinicius, , & Shimoura, Renan, , & Ceballos, Cesar, , & Rotstein, Horacio G., & Roque, Antonio, (2019). Asymmetrical voltage response in resonant neurons shaped by nonlinearities. Chaos, 29, 103135 (article number).
Rotstein, Horacio G., & Nadim, Farzan (2019). Membrane potential resonance arising from responses of neuronal models to oscillatory inputs in current versus voltage clamp. Biological Cybernetics, 113, 373–395.
Bel, Andrea, , & Rotstein, Horacio G. (2019). Resonance-based mechanisms of generation of relaxation oscillations in networks of non-oscillatory neurons. Trends in Mathematics: Research Perspectives (CRM Barcelona, Summer 2018), 2018,
Bel, Andrea , & Torresi, Ana, & Rotstein, Horacio G. (2019). Inhibition-based relaxation oscillations emerge in resonator networks. Mathematical Modeling of Natural Phenomena, 14, 405 (article number).
Bel, Andrea, & Rotstein, Horacio G. (2019). Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations . Journal of Computational Neuroscience, 46, 169-195.
Leiser, Randolph J, & Rotstein, Horacio G. (2019). Network resonance: impedance interactions via a frequency response alternating map (FRAM). SIAM Journal of Applied Dynamical Systems (SIADS), 18, 769-807.
Tran, Trinh, & Unal, Cagri T, & Zaborszky, Laszlo, & Kirkwood, Alfredo, & Rotstein, Horacio G., & Golowasch, Jorge P. (2019). Ionic current correlations are ubiquitous across phyla. Scientific Reports, 9, 1687.
Rotstein, Horacio G. (2018). Subthreshold amplitude and phase resonance in single neurons: 2D models. Encyclopedia of Computational Neuroscience,
Rotstein, Horacio G. (2018). Subthreshold antiresonance and antiphasonance in single neurons: 3D models . Encyclopedia of Computational Neuroscience,
Zhou, Julia , & Vo, Theodore, & Rotstein, Horacio G., & McCarthy, Michelle , & Kopell, Nancy (2018). M-current expands the range of gamma frequency inputs to which the neuronal target entrains. Journal of Mathematical Neuroscience, 8, 13.
Turnquist, Axel G. R., & Rotstein, Horacio G. (2018). Quadratization: From conductance-based models to caricature models with parabolic nonlinearities. Encyclopedia of Computational Neuroscience,
Kass, Robert, & Amari, Shun-ichi, & Arai, Kensuke, & Brown, Emery, & Diekman, Casey O., & Diesmann, Markus, & Doiron, Brent, & Eden, Uri, & Fairhall, Adrienne, & Fiddyment, Grant, & Fukai, Tomoki, & Grun, Sonja, & Harrison, Matthew, & Helias, Moritz, & Nakahara, Hiroyuki, & Teramae, Jun-nosuke, & Thomas, Peter J, & Reimers, Mark, & Rodu, Jordan, & Rotstein, Horacio G., & Shea-Brown, Eric, & Shimazaki, Hideaki, & Shinomoto, Shigeru, & Yu, Byron, & Kramer, Mark (2018). Computational neuroscience: mathematical and statistical perspectives. Annual Review of Statistics and its Applications, 5(1), 183-214.
Burke, Dennis, & Rotstein, Horacio G., & Álvarez, Verónica (2017). Striatal local circuitry: a new framework for lateral inhibition . Neuron,
Rotstein, Horacio G. (2017). Spiking resonances in models with the same slow resonant and fast amplifying ionic currents but different subthreshold dynamic properties. Journal of Computational Neuroscience,
Rotstein, Horacio G., & Schneider, Elisa , & Szczupak, Lidia (2017). Feedback signal from motoneurons influences a rhythmic pattern generator. The Journal of Neuroscience,
Leiser, Randolph J. , & Rotstein, Horacio G. (2017). Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity. Physical Review E,
Rotstein, Horacio G. (2017). Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics. Journal of Computational Neuroscience,
Chen, Yinbo, & Li, Xinping, & Rotstein, Horacio G., & Nadim, Farzan (2016). Membrane potential resonance frequency directly influences network frequency through gap junctions. Journal of Neurophysiology, 116, 1554-1563.
Fox, David, & Tseng, Hua-an, & Smolinsky, Tomasz, & Rotstein, Horacio G., & Nadim, Farzan (2017). Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comp Biology,
Rotstein, Horacio G. (2017). The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. Journal of Computational Neuroscience,
Rotstein, Horacio G., & Olarinre, Motolani, & Golowasch, Jorge P. (2016). Dynamic compensation mechanism give rise to period and duty cycle level sets in oscillatory neuronal models. Journal of Neurophysiology, Online First,
Espanol, Malena, & Rotstein, Horacio G. (2015). Complex mixed-mode oscillatory patterns in a periodically forced excitable Oregonator. Chaos, 25, 064601 (18 pages).
Schindewolf, Craig, & Kim, Donwgook, & Bel, Andrea, & Rotstein, Horacio G. (2015). Complex patterns in networks hyperexcitable neurons with multiple time scales. Theoretical Computer Science C - Natural Computing, focus issue on "Brain and Neural Networks Computing,
Rotstein, Horacio G. (2015). Cluster-size dynamics: A phenomenological model for the interaction between coagulation and fragmentation. Journal of Chemical Physics, 142, 224101 (11 pages).
Rotstein, Horacio G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents . Journal of Computational Neuroscience, 38, 325 - 354.
Rotstein, Horacio G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. J Comp Neurosci, 38, 325-354.
Rotstein, Horacio G., & Nadim, Farzan (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37, 9-28.
Rotstein, Horacio G. (2014). Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. Journal of Mathematical Neuroscience, 4, 1 - 41 (article number 4).
Kaper, Tasso J., & Kramer, Mark A., & Rotstein, Horacio G. (2013). Introduction to the focus issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment . Chaos , 23, 046001.
Rotstein, Horacio G. (2013). Preferred frequency responses to oscillatory inputs in an electrochemical cell model: Linear amplitude and phase resonance . Physical Review E, 88, 062913 .
Rotstein, Horacio G., & Nadim, Farzan (2013). Neurons and neural networks: Computational models. Encyclopedia of Life Sciences (ohn Wiley \& Sons, Ltd: Chicheste), DOI: 10.1002/9780470015902.a0000089.pub2.
Rotstein, Horacio G. (2013). Abrupt and gradual transitions between low and hyperexcited firing frequencies in neuronal models with fast synaptic excitation: A comparative study. Chaos,
Stark, Eran, & Eichler, Ronny, & Roux, Lisa , & Fujisawa, Shigeyoshi, & Rotstein, Horacio G., & Buzsaki, Gyorgy (2013). Inhibition induced theta resonance in cortical circuits. Neuron, 80, 1263 - 1276.
Rotstein, Horacio G., & Nadim, Farzan (2013). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, Online First, 1 - 20.
Rotstein, Horacio G., & Wu, Hui (2012). Swing, release, and escape mechanisms contribute to the generation of phase-locked patterns in a globablly coupled FitzHugh-Nagumo model. Physical Review E, 35.
Rotstein, Horacio G., & Wu, Hui (2012). Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system. The Journal of Chemical Physics, 137, 104908 (1-20).
Rotstein, Horacio G., & Coombes, Stephen, & Gheorghe, Ana M (2012). Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo type. SIAM Journal on Applied Dynamical Systems (SIADS), 11, 135 - 180.
Kispersky, Tilman , & White, John A., & Rotstein, Horacio G. (2010). The Mechanism of abrupt transition from normal to hyperexcitable (epileptic) spiking activity in medial entorhinal cortex layer II stellate cells. PLoS One, 5, e13697 (1-21).
Boubendir, Yassine, & Mendez, Vicenc, & Rotstein, Horacio G. (2010). Dynamics of one- and two-dimensional fronts in a bistable equation with delayed global coupling: localization and control.. Physical Review E, 82(1539-3755 (Print) - 1550-2376 (Online) ), 036601 (1-20).
Rotstein, Horacio G., & Jalics, Jozsi, & Krupa, Martin (2010). Mixed-mode oscillations in a three time scale system of ODEs motivated by a neural model. Dynamical Systems: An International Journal, iFirst, 1-38.
Rotstein, Horacio G., & Wechselberger, Martin , & Kopell, Nancy (2008). Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM Journal on Applied Dynamical Systems (SIADS), 7, 1582 - 1611.
COLLAPSE
Conference Proceeding
Intrinsic ionic dynamics, oscillations, and resonance are reflected in and can be extracted from neuronal spike-train cross-correlations
2022 Conference on Cognitive Computational Neuroscience, September 2022
2022 Conference on Cognitive Computational Neuroscience, September 2022
Chapter
Fox, David M, & Rotstein, Horacio G., & Nadim, Farzan (2014). Bursting in Neurons and Small Networks, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-17). New York: Springer
Rotstein, Horacio G. (2014). Subthreshold amplitude and phase resonance in single cells, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1 - 12). New York: Springer
Rotstein, Horacio G. (2014). Mixed-mode oscillations in single neurons, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1 - 13). New York: Springer
Rotstein, Horacio G. (2014). Subthreshold amplitude and phase resonance in single cells, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1 - 12). New York: Springer
Rotstein, Horacio G. (2014). Mixed-mode oscillations in single neurons, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1 - 13). New York: Springer