Victor Matveev
Victor Matveev
Professor, Mathematical Sciences
616 Cullimore Hall (CULM)
Education
Ph.D.; State University of New York at Stony Brook; Theoretical Physics; 1996
M.S.; State University of New York at Stony Brook; Theoretical Physics; 1995
M.A.; State University of New York at Stony Brook; ; 1993
Diploma; Lomonosov Moscow State University; Physics; 1991
M.S.; State University of New York at Stony Brook; Theoretical Physics; 1995
M.A.; State University of New York at Stony Brook; ; 1993
Diploma; Lomonosov Moscow State University; Physics; 1991
Website
2025 Spring Courses
MATH 792B - PRE DOCTORAL RESEARCH
MATH 331 - INTRO PARTIAL DIFF EQ
MATH 331 - INTRO PARTIAL DIFF EQ
Past Courses
MATH 111: CALCULUS I
MATH 211: CALCULUS III A
MATH 211: CALCULUS IIIA
MATH 213: CALCULUS IIIB
MATH 227: MATHEMATICAL MODELING
MATH 331: INTRO PARTIAL DIFF EQ
MATH 331: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
MATH 332: COMPLEX VARIABLES - HONORS
MATH 332: INTRO COMPLEX VARIABLES
MATH 335: VECTOR ANALYSIS
MATH 340: APPLIED NUMERICAL METHODS
MATH 371: PHYSIOLOGY AND MEDICINE
MATH 401: UNDERGRADUATE RESEARCH SEMINAR
MATH 430: ANALYTICL & COMPUTNL NEUROSCI
MATH 613: ADV APPLIED MATH-MODELNG
MATH 614: NUMERICAL METHODS I
MATH 635: ANALYTCL COMPUTATIONAL NEURO
MATH 656: COMPLEX VARIABLES
MATH 676: ADV ORDINARY DIFFE EQ
MATH 756: COMPLEX VARIABLES II
MATH 211: CALCULUS III A
MATH 211: CALCULUS IIIA
MATH 213: CALCULUS IIIB
MATH 227: MATHEMATICAL MODELING
MATH 331: INTRO PARTIAL DIFF EQ
MATH 331: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
MATH 332: COMPLEX VARIABLES - HONORS
MATH 332: INTRO COMPLEX VARIABLES
MATH 335: VECTOR ANALYSIS
MATH 340: APPLIED NUMERICAL METHODS
MATH 371: PHYSIOLOGY AND MEDICINE
MATH 401: UNDERGRADUATE RESEARCH SEMINAR
MATH 430: ANALYTICL & COMPUTNL NEUROSCI
MATH 613: ADV APPLIED MATH-MODELNG
MATH 614: NUMERICAL METHODS I
MATH 635: ANALYTCL COMPUTATIONAL NEURO
MATH 656: COMPLEX VARIABLES
MATH 676: ADV ORDINARY DIFFE EQ
MATH 756: COMPLEX VARIABLES II
Research Interests
Mechanisms of synaptic neurotransmitter release; presynaptic calcium channels
Mathematical and computational modeling of intracellular calcium ion diffusion and buffering
Role of endogenous calcium buffers in regulating cell calcium signalling and synaptic transmission
Mechanisms of activity-dependent changes in synaptic strength, termed short-term synaptic plasticity
Impact of short-term synaptic dynamics on the activity and information-processing properties of neuronal networks.
Generalized phase-response methods for analyzing non-weakly coupled oscillator networks
Dimensional reduction of problems in neuronal network dynamics
Software
Calcium Calculator (CalC) modeling software, release 7.10.8
GitHub, June 2024
Calcium Calculator (CalC) modeling software, release 7.10.2
October (4th Quarter/Autumn) 2022
Calcium Calculator (CalC) modeling software, release 7.9.7
January (1st Quarter/Winter) 2021
Calcium Calculator (CalC) modeling software, release 7.9.6
August 2019
Calcium Calculator (CalC) Modeling Software, release 7.9.4
August 2018
GitHub, June 2024
Calcium Calculator (CalC) modeling software, release 7.10.2
October (4th Quarter/Autumn) 2022
Calcium Calculator (CalC) modeling software, release 7.9.7
January (1st Quarter/Winter) 2021
Calcium Calculator (CalC) modeling software, release 7.9.6
August 2019
Calcium Calculator (CalC) Modeling Software, release 7.9.4
August 2018
SHOW MORE
Calcium Calculator (CalC) Modeling Software, release 7.9.3
June 2018
Calcium Calculator (CalC) Modeling Software, release 7.9.1
April (2nd Quarter/Spring) 2018
Calcium Calculator (CalC) Modeling Software, release 7.8.6
May 2016
Calcium Calculator (CalC) Modeling Software, release 7.8.4
January (1st Quarter/Winter) 2016
Calcium Calculator (CalC) Modeling Software, release 7.8.0
August 2015
Calcium Calculator (CalC) Modeling Software, release 7.7.4
March 2014
Calcium Calculator (CalC) Modeling Software, release 7.7
NJIT, August 2013
Calcium Calculator (CalC) Modeling Software, release 7.6
NJIT, June 2013
Calcium Calculator (CalC) Modeling Software, release 7.4
NJIT, April (2nd Quarter/Spring) 2013
Calcium Calculator (CalC) Modeling Software, release 7.3
NJIT, December 2012
Calcium Calculator (CalC) Modeling Software, release 7.2
NJIT, September 2012
Calcium Calculator (CalC) Modeling Software, release 7.1
NJIT, September 2012
Calcium Calculator (CalC) Modeling Software, release 7.0
NJIT, August 2012
Calcium Calculator (CalC) Modeling Software, release 6.0.5
September 2008
Calcium Calculator (CalC) modeling software, release 7.10.7
GitHub, April (2nd Quarter/Spring) 2003
June 2018
Calcium Calculator (CalC) Modeling Software, release 7.9.1
April (2nd Quarter/Spring) 2018
Calcium Calculator (CalC) Modeling Software, release 7.8.6
May 2016
Calcium Calculator (CalC) Modeling Software, release 7.8.4
January (1st Quarter/Winter) 2016
Calcium Calculator (CalC) Modeling Software, release 7.8.0
August 2015
Calcium Calculator (CalC) Modeling Software, release 7.7.4
March 2014
Calcium Calculator (CalC) Modeling Software, release 7.7
NJIT, August 2013
Calcium Calculator (CalC) Modeling Software, release 7.6
NJIT, June 2013
Calcium Calculator (CalC) Modeling Software, release 7.4
NJIT, April (2nd Quarter/Spring) 2013
Calcium Calculator (CalC) Modeling Software, release 7.3
NJIT, December 2012
Calcium Calculator (CalC) Modeling Software, release 7.2
NJIT, September 2012
Calcium Calculator (CalC) Modeling Software, release 7.1
NJIT, September 2012
Calcium Calculator (CalC) Modeling Software, release 7.0
NJIT, August 2012
Calcium Calculator (CalC) Modeling Software, release 6.0.5
September 2008
Calcium Calculator (CalC) modeling software, release 7.10.7
GitHub, April (2nd Quarter/Spring) 2003
COLLAPSE
Journal Article
Matveev, Victor V. (2022). Close agreement between deterministic vs. stochastic modeling of first-passage time to vesicle fusion. Biophysical Journal,
Chen, Yinbo, & Matveev, Victor (2021). Stationary Ca2+ nanodomains in the presence of buffers with two binding sites. Biophysical Journal, 120(10), 1942-1956.
Chen, Yinbo, & Muratov, Cyrill B., & Matveev, Victor V. (2020). Efficient approximations for stationary single-channel Ca2+ nanodomains across length scales. Biophysical Journal, 119(6), 1239-1254.
Matveev, Victor V. (2018). Extension of Rapid Buffering Approximation to Ca2+ buffers with two binding sites. Biophysical Journal, 114(5), 1204-1215.
Gandasi, Nikhil R, & Yin, Peng, & Riz, Michela, & Chibalina, Margarita V, & Cortese, Giuliana, & Lund, Per-Eric, & Matveev, Victor V., & Rorsman, Patrik, & Sherman, Arthur , & Pedersen, Morten G, & Barg, Sebastian (2017). Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. Journal of Clinical Investigation(May 15, 2017), 12.
Chen, Yinbo, & Matveev, Victor (2021). Stationary Ca2+ nanodomains in the presence of buffers with two binding sites. Biophysical Journal, 120(10), 1942-1956.
Chen, Yinbo, & Muratov, Cyrill B., & Matveev, Victor V. (2020). Efficient approximations for stationary single-channel Ca2+ nanodomains across length scales. Biophysical Journal, 119(6), 1239-1254.
Matveev, Victor V. (2018). Extension of Rapid Buffering Approximation to Ca2+ buffers with two binding sites. Biophysical Journal, 114(5), 1204-1215.
Gandasi, Nikhil R, & Yin, Peng, & Riz, Michela, & Chibalina, Margarita V, & Cortese, Giuliana, & Lund, Per-Eric, & Matveev, Victor V., & Rorsman, Patrik, & Sherman, Arthur , & Pedersen, Morten G, & Barg, Sebastian (2017). Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. Journal of Clinical Investigation(May 15, 2017), 12.
SHOW MORE
Matveev, Victor V. (2016). Padé approximation of a stationary single-channel calcium nanodomain. Biophysical Journal, 111(9), 2062-2074.
Delvendahl, Igor, & Jablonski, Lukasz, & Baade, Carolin, & Matveev, Victor V., & Neher, Erwin, & Hallermann, Stefan (2015). Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling. Proceedings or the National Academy of Sciences U.S.A., 112(23), E3075–E3084.
Oh, Myongkeun, & Zhao, Shunbing, & Matveev, Victor V., & Nadim, Farzan (2012). Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. Journal of Computational Neuroscience, 33(3), 573-585.
Oh, Myongkeun, & Matveev, Victor V. (2011). Non-weak inhibition and phase resetting at negative values of phase in cells with fast-slow dynamics at hyperpolarized potentials. Journal of Computational Neuroscience, 31(1), 31-42.
Matveev, Victor V., & Bertram, Richard, & Sherman, ARthur (2011). Calcium cooperativity of exocytosis as a measure of calcium channel domain overlap. Brain Research, 1398, 126-38.
Weber, Alexander M, & Wong, Fiona K, & Tufford, Adele R, & Schlichter, Lyanne C, & Matveev, Victor V., & Stanley, Elise F (2010). N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release. Nature Neuroscience, 13, 1348–1350.
Matveev, Victor V., & Bertram, Richard, & Sherman, Arthur (2009). Ca2+ current vs. Ca2+ channel cooperativity of exocytosis. Journal of Neuroscience, 29(39), 12196-12209.
Oh, Myongkeun, & Matveev, Victor V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. Journal of Computational Neuroscince, 26(2), 303-320.
Delvendahl, Igor, & Jablonski, Lukasz, & Baade, Carolin, & Matveev, Victor V., & Neher, Erwin, & Hallermann, Stefan (2015). Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling. Proceedings or the National Academy of Sciences U.S.A., 112(23), E3075–E3084.
Oh, Myongkeun, & Zhao, Shunbing, & Matveev, Victor V., & Nadim, Farzan (2012). Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. Journal of Computational Neuroscience, 33(3), 573-585.
Oh, Myongkeun, & Matveev, Victor V. (2011). Non-weak inhibition and phase resetting at negative values of phase in cells with fast-slow dynamics at hyperpolarized potentials. Journal of Computational Neuroscience, 31(1), 31-42.
Matveev, Victor V., & Bertram, Richard, & Sherman, ARthur (2011). Calcium cooperativity of exocytosis as a measure of calcium channel domain overlap. Brain Research, 1398, 126-38.
Weber, Alexander M, & Wong, Fiona K, & Tufford, Adele R, & Schlichter, Lyanne C, & Matveev, Victor V., & Stanley, Elise F (2010). N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release. Nature Neuroscience, 13, 1348–1350.
Matveev, Victor V., & Bertram, Richard, & Sherman, Arthur (2009). Ca2+ current vs. Ca2+ channel cooperativity of exocytosis. Journal of Neuroscience, 29(39), 12196-12209.
Oh, Myongkeun, & Matveev, Victor V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. Journal of Computational Neuroscince, 26(2), 303-320.
COLLAPSE
Chapter
Matveev, Victor V. (2014). Biophysical Models of Calcium-Dependent Exocytosis, Dieter Jaeger, Ranu Jung (Eds.), Encyclopedia of Computational Neuroscience, Springer-Verlag. (pp. 1-17). New York: Encyclopedia of Computational Neuroscience, Springer-Verlag
Martinez, Diana, & Matveev, Victor V., & Nadim, Farzan (2014). Short-Term Synaptic Plasticity in Central Pattern Generators, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-14). New York: Springer
Matveev, Victor V. (2014). Biophysical Models of Synaptic Facilitation, Dieter Jaeger, Ranu Jung (Eds.), Encyclopedia of Computational Neuroscience, Springer-Verlag. (pp. 1-6). New York: Encyclopedia of Computational Neuroscience, Springer-Verlag
Martinez, Diana, & Matveev, Victor V., & Nadim, Farzan (2014). Short-Term Synaptic Plasticity in Central Pattern Generators, Jaeger, Dieter; Jung, Ranu (Eds.), Springer. (pp. 1-14). New York: Springer
Matveev, Victor V. (2014). Biophysical Models of Synaptic Facilitation, Dieter Jaeger, Ranu Jung (Eds.), Encyclopedia of Computational Neuroscience, Springer-Verlag. (pp. 1-6). New York: Encyclopedia of Computational Neuroscience, Springer-Verlag