David Shirokoff
David Shirokoff
Associate Professor, Mathematical Sciences
512 Cullimore Hall (CULM)
Education
Ph.D.; Massachusetts Institute of Technology; Mathematics; 2011
BASc, Bachelor of Applied Science (Engineering); University of Toronto; Engineering Physics; 2006
BASc, Bachelor of Applied Science (Engineering); University of Toronto; Engineering Physics; 2006
Past Courses
MATH 111: CALCULUS I
MATH 112: CALCULUS II
MATH 213: CALCULUS III B
MATH 331: INTRO PARTIAL DIFF EQ
MATH 391: NUMERICAL LINEAR ALGEBRA
MATH 440: ADV APPL NUMERICAL METH
MATH 440: ADVANCED APPLIED NUMERICAL METHODS
MATH 473: INTERMED DIFFEREN EQUATN
MATH 473: INTERMEDIATE DIFFERENTIAL EQUATIONS
MATH 480: INTRODUCTORY MATHEMATICAL ANALYSIS
MATH 481: ADVANCED CALCULUS
MATH 545: INTRODUCTORY MATHEMATICAL ANALYSIS
MATH 546: ADVANCED CALCULUS
MATH 573: INTERMED DIFF EQUATIONS
MATH 613: ADV APPLIED MATH-MODELNG
MATH 707: ADVANCED APPLIED MATHEMATICS IV: SPECIAL TOPICS
MATH 707: ST: OPTIMIZATION
MATH 707: ST: SPECIAL PROJECTS
MATH 112: CALCULUS II
MATH 213: CALCULUS III B
MATH 331: INTRO PARTIAL DIFF EQ
MATH 391: NUMERICAL LINEAR ALGEBRA
MATH 440: ADV APPL NUMERICAL METH
MATH 440: ADVANCED APPLIED NUMERICAL METHODS
MATH 473: INTERMED DIFFEREN EQUATN
MATH 473: INTERMEDIATE DIFFERENTIAL EQUATIONS
MATH 480: INTRODUCTORY MATHEMATICAL ANALYSIS
MATH 481: ADVANCED CALCULUS
MATH 545: INTRODUCTORY MATHEMATICAL ANALYSIS
MATH 546: ADVANCED CALCULUS
MATH 573: INTERMED DIFF EQUATIONS
MATH 613: ADV APPLIED MATH-MODELNG
MATH 707: ADVANCED APPLIED MATHEMATICS IV: SPECIAL TOPICS
MATH 707: ST: OPTIMIZATION
MATH 707: ST: SPECIAL PROJECTS
Journal Article
Shirokoff, David G., & Zhou, Dong, & Seibold, Benjamin, & Rosales, Rodolfo (2024). Spatial Manifestations of Order Reduction in Runge-Kutta Methods for Initial Boundary Value Problems. Communications in Mathematical Sciences, 42.
Shirokoff, David G., & Biswas, Abhijit, & Ketcheson, David, & Seibold, Benjamin (2024). Algebraic structure of the weak stage order conditions for Runge-Kutta methods. SIAM Journal on Numerical Analysis,
Biswas, Abhijit, & Ketcheson, David, & Seibold, Benjamin, & Shirokoff, David G. (2023). Design of DIRK Schemes with High Weak Stage Order. Communications in Applied Mathematics and Computational Science, 23.
Rosales, Rodolfo, & Seibold, Benjamin, & Shirokoff, David G., & Zhou, Dong (2021). High-order Finite Element Methods for a Pressure Poisson Equation Reformulation of the Navier-Stokes Equations with Electric Boundary Conditions. Computer Methods in Applied Mechanics and Engineering, 373, 113451.
Batson, William, & Cummings, Linda J., & Shirokoff, David G., & Kondic, Lou (2019). Oscillatory instability of liquid films nonlocally heated from below. Journal of Fluid Mechanics, 872, 928-962.
Shirokoff, David G., & Biswas, Abhijit, & Ketcheson, David, & Seibold, Benjamin (2024). Algebraic structure of the weak stage order conditions for Runge-Kutta methods. SIAM Journal on Numerical Analysis,
Biswas, Abhijit, & Ketcheson, David, & Seibold, Benjamin, & Shirokoff, David G. (2023). Design of DIRK Schemes with High Weak Stage Order. Communications in Applied Mathematics and Computational Science, 23.
Rosales, Rodolfo, & Seibold, Benjamin, & Shirokoff, David G., & Zhou, Dong (2021). High-order Finite Element Methods for a Pressure Poisson Equation Reformulation of the Navier-Stokes Equations with Electric Boundary Conditions. Computer Methods in Applied Mechanics and Engineering, 373, 113451.
Batson, William, & Cummings, Linda J., & Shirokoff, David G., & Kondic, Lou (2019). Oscillatory instability of liquid films nonlocally heated from below. Journal of Fluid Mechanics, 872, 928-962.
SHOW MORE
Shirokoff, David G., & Zhou, Dong, & Seibold, Benjamin (2019). Unconditional Stability for Multistep ImEx Schemes: Practice. Journal of Computational Physics, 376(1), 27.
Shirokoff, David, & Bandegi, Mahdi (2018). Approximate global minimizers to pairwise interaction problems via convex relaxation. SIAM Journal on Applied Dynamical Systems, 17(1), 40.
Shirokoff, David G., & Zhou, Dong, & Seibold, Benjamin, & Rosales, Rodolfo (2017). Unconditional Stability for Multistep ImEx Schemes: Theory. SIAM Journal on Numerical Analysis, 55(5), 41.
Shirokoff, David G., & Cheng, Xinyu, & Li, Dong, & Wetton, Brian (2016). On the spectral gap of a square distance matrix. Journal of Statistical Physics, 166(3-4), 1029–1035.
Galagusz, Ryan, & Shirokoff, David G., & Nave, Jean-Christophe (2016). A Fourier penalty method for solving the time dependent Maxwell's equations in domains with curved boundaries. Journal of Computational Physics/Elsevier, 44.
Shirokoff, David G., & Choksi, Rustum, & Nave, Jean-Christophe (2015). Sufficient Conditions for Global Minimality of Metastable States in a Class of Non-convex Functionals: A Simple Approach Via Quadratic Lower Bounds. Journal of Nonlinear Science/Springer, 44.
Shirokoff, David G. (2015). A Sharp-interface active penalty method for the incompressible Navier-Stokes equations. Journal of Scientific Computing, 62(1), 24.
Shirokoff, David, & Bandegi, Mahdi (2018). Approximate global minimizers to pairwise interaction problems via convex relaxation. SIAM Journal on Applied Dynamical Systems, 17(1), 40.
Shirokoff, David G., & Zhou, Dong, & Seibold, Benjamin, & Rosales, Rodolfo (2017). Unconditional Stability for Multistep ImEx Schemes: Theory. SIAM Journal on Numerical Analysis, 55(5), 41.
Shirokoff, David G., & Cheng, Xinyu, & Li, Dong, & Wetton, Brian (2016). On the spectral gap of a square distance matrix. Journal of Statistical Physics, 166(3-4), 1029–1035.
Galagusz, Ryan, & Shirokoff, David G., & Nave, Jean-Christophe (2016). A Fourier penalty method for solving the time dependent Maxwell's equations in domains with curved boundaries. Journal of Computational Physics/Elsevier, 44.
Shirokoff, David G., & Choksi, Rustum, & Nave, Jean-Christophe (2015). Sufficient Conditions for Global Minimality of Metastable States in a Class of Non-convex Functionals: A Simple Approach Via Quadratic Lower Bounds. Journal of Nonlinear Science/Springer, 44.
Shirokoff, David G. (2015). A Sharp-interface active penalty method for the incompressible Navier-Stokes equations. Journal of Scientific Computing, 62(1), 24.
COLLAPSE
Conference Proceeding
DIRK Schemes with High Weak Stage Order
August 2020
August 2020
Chapter
Shirokoff, David, & Seibold, Benjamin, & Zhou, Dong, & Rosales, Rodolfo, & Chidyagwai, Prince (2014). Meshfree finite differences for a vector Poisson and pressure Poisson equation with electric boundary conditions, Griebel, M. and Schweitzer, M.A. (Eds.), Meshfree Methods for Partial Differential Equations VII, Springer. (pp. 223--246). Meshfree Methods for Partial Differential Equations VII, Springer